您好、欢迎来到现金彩票网!
当前位置:在线斗牛棋牌 > 标准型 >

为什么二次型化标准型一定要将基础解系单位化呢?

发布时间:2019-07-27 12:00 来源:未知 编辑:admin

  使用正交变换法做的话。单位正交化之前的矩阵P只满足P∧-1AP=∧(标准形),而二次型化标准形是要找到满足C∧TAC=∧的C。所以要求P的逆矩阵等于P的转置,此时P为正交矩阵,所以将P进行单位正交化(正交矩阵要求每一列都是单位向量),从而得到C。

  基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系。

  对于一个方程组,有无穷多组的解来说,最基础的,不用乘系数的那组方程的解,如(1,2,3)和(2,4,6)及(3,6,9)以及(4,8,12)......等均符合方程的解,则系数K为1,2,3,4.....等,因此(1,2,3)就为方程组的基础解系。

  此时,Ax=0的解就是k2b2+k3b3+...+knbn;其中ki不全为零。由于:Ax=0Ax=0*B,B为A的特征向量,对应一个特征值的特征向量写成通解的形式是乘上ki并加到一起。这是基础解系和通解的关系。

  使用正交变换法做的话。单位正交化之前的矩阵P只满足P∧-1AP=∧(标准形),而二次型化标准形是要找到满足C∧TAC=∧的C。所以要求P的逆矩阵等于P的转置,此时P为正交矩阵,所以将P进行单位正交化(正交矩阵要求每一列都是单位向量),从而得到C。

  相伴双线性形式;它是对称双线性形式。尽管这是非常一般性的定义,经常假定这个环R是一个域,它的特征不是2。

  双线性形式B的核由正交于V的所有元素组成,而二次形式Q的核由B的核中的有Q(u)=0的所有元素u组成。 如果2是可逆的,则Q和它的相伴双线性形式B有同样的核。

  展开全部使用正交变换法做的话。单位正交化之前的矩阵P只满足P∧-1AP=∧(标准形),而二次型化标准形是要找到满足C∧TAC=∧的C。所以要求P的逆矩阵等于P的转置,此时P为正交矩阵,所以将P进行单位正交化(正交矩阵要求每一列都是单位向量),从而得到C。

  使用配方法做的话。求出来的P就是满足P∧TAP=∧的,所以不用单位化。

  对于二次型又利用非退化的线性变换,得到C=TTAT,假定C是A经过变换而来的,

  我们以二次型矩阵A的特征矩阵为基础,利用正交化法进行变换,思路是正交矩阵(AAT=E)的转置等于逆,利用正交矩阵使A对角化(以特征值为对角线元素的对角矩阵)。

  注意:正交矩阵不同列内积均为0,也就是列向量正交,且每列元素平方和均为1,也就是单位化,矩阵列向量正交不代表矩阵就是正交矩阵!

  二次型矩阵A是实对称矩阵(必可对角化),如果其特征值λ互异,那么对应特征向量必正交(对角称矩阵的性质),由其构成的矩阵只需单位化(列向量分别除以模),就可得到正交变换矩阵;

  否则,二次型矩阵A相同特征值对应的特征向量,取基础解系构成矩阵,需要施密特正交变换(正交化),然后单位化(勿忘!)。

http://smartpongo.com/biaozhunxing/423.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有