您好、欢迎来到现金彩票网!
当前位置:在线斗牛棋牌 > 标准型 >

矩阵里头何时要将特征向量标准化正交化单位化标准正交化? 另外

发布时间:2019-09-11 15:09 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  特征向量是不可以做正交化的,当你的需求是找一个酉阵P使得P^{-1}AP是对角阵时才需要做这些事。单位化就是标准化,也叫归一化。

  线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

  例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。

  从数学上看,如果向量v与变换A满足Av=λv,则称向量v是变换A的一个特征向量,λ是相应的特征值。这一等式被称作“特征值方程”。

  其中vi是向量在基向量上的投影(即坐标),这里假设向量空间为n 维。由此,可以直接以坐标向量表示。利用基向量,线性变换也可以用一个简单的矩阵乘法表示。

  但是,有时候用矩阵形式写下特征值方程是不自然甚或不可能的。例如在向量空间是无穷维的时候,上述的弦的情况就是一例。取决于变换和它所作用的空间的性质,有时将特征值方程表示为一组微分方程更好。若是一个微分算子,其特征向量通常称为该微分算子的特征函数。例如,微分本身是一个线性变换因为(若M和N是可微函数,而a和b是常数)

  一般来讲特征向量是不可以做正交化的,当需求是找一个酉阵P使得P^{-1}AP是对角阵时才可以/需要做这些事,单位化就是标准化,也叫归一化。

  如果只是要求P^(-1)AP是对角阵,那么此时不可以做正交化,单位化做不做无所谓。如果要求酉对角化,那么当然要先正交化才能再做单位化,先做单位化没用。

  特征向量对应的特征值是它所乘的那个缩放因子。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量 。线性变换的主特征向量是最大特征值对应的特征向量。

  如果λ = 0,它就不变,如果λ为正,它就按比例增长,如果λ是负的,它就按比例衰减。例如,理想化的兔子的总数在兔子更多的地方繁殖更快,从而满足一个正λ的特征值方程。

  一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。

  反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。

  展开全部“矩阵里头何时要将特征向量标准化,正交化,单位化,标准正交化?”

  当你的需求是找一个酉阵P使得P^{-1}AP是对角阵时才可以/需要做这些事

  单位化就是标准化,也叫归一化更多追问追答追问谢谢大神!新年快乐!

  应该就是求p^(-1)AP时需要求的,我看到答案中有提到标准正交化,它的意思是先标准化之后再正交化吗?

  一般的顺序是不是求出基础解系后单位化就好了,然后有重根就先正交化再单位化,之后就构成P了?

  谢谢!追答如果只是要求P^(-1)AP是对角阵,那么此时不可以做正交化,单位化做不做无所谓

http://smartpongo.com/biaozhunxing/693.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有